Forecasting Natural Gas Consumption Using Pso Optimized Least SquaresSupport Vector Machines
نویسندگان
چکیده
منابع مشابه
Forecasting Natural Gas Consumption Using Pso Optimized Least Squares Support Vector Machines
This paper proposes an effective model based on the least squares support vector machines (LSSVM) and the particle swarm optimization (PSO), termed PSO-LSSVM, for prediction of natural gas consumption, as an important energy resource. The salient feature of mapping nonlinear data into high dimension feature space, distinguishes LS-SVM as a powerful approach for forecasting and estimation. Optim...
متن کاملForecasting the Portuguese Electricity Consumption Using Least-Squares Support Vector Machines
The subject of this paper is the multi-step prediction of the Portuguese electricity consumption profile up to a 48-hour prediction horizon. In previous work on this subject, the authors have identified a radial basis function neural network one-step-ahead predictive model, which provides very good prediction accuracy and is currently in use at the Portuguese power-grid company. As the model is...
متن کاملLoad Forecasting Using Fixed-Size Least Squares Support Vector Machines
Based on the Nyström approximation and the primal-dual formulation of Least Squares Support Vector Machines (LS-SVM), it becomes possible to apply a nonlinear model to a large scale regression problem. This is done by using a sparse approximation of the nonlinear mapping induced by the kernel matrix, with an active selection of support vectors based on quadratic Renyi entropy criteria. The meth...
متن کاملYearly Electricity Consumption Forecasting using a Nonhomogeneous Exponential Model Optimized by PSO Algorithm
Yearly electricity consumption trends of most developing countries usually exhibit approximately exponential growth curves. An optimized nonhomogeneous exponential model (ONEM) is proposed as a method of forecasting electricity consumption by using trend extrapolation. The parameters of the nonhomogeneous exponential equation are obtained by using the inverse accumulated generating operation, d...
متن کاملShort-term Electric Load Forecasting Using Least Square Support Vector Machines
This paper presents a model for short-term load forecasting using least square support vector machines. Available data are analyzed and appropriate features are selected for the model. Last 24 hours load demands are used for features in combination with day in week and hour in day. It is shown that temperature is not always a very good feature for the model. Appropriate data set is used for the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Artificial Intelligence & Applications
سال: 2011
ISSN: 0976-2191
DOI: 10.5121/ijaia.2011.2405